value.

FDA for the 1-D Advection Equation

F , I

We now wish to form approximations for the 1-D advection equation: §+C§ =0.

This is a very common equation and is a crucial component of the PDE’s for geophysical
motions, such as those in the atmosphere.

1. Euler Scheme

A first guess at how to discretize this equation might be to use a forward-in-time
derivative for the time portion and a centered-in-space derivative for the space part.
We will denote this as the FIT/CIS scheme, or the Euler scheme. The scheme can be
f:r_n+1 _fer +cf;j.1 _f:’_n_l

At 2Ax
is at the “n” time level. We could have easily just have choosen the “n+1” time level for
the spatial derivatives (what might this mean?).

written as, =0. Note that the specification of the spatial derivative

Talyor series analysis ———

Lets first use Talyor series analyses to show what the order of approximation for this
FDA of this PDE. Lets write out all the Talyor series expansions we need:

af A 82f AP Pf

n+1_
L = A T Y o

+H.O.T.

¥ A Pf A DS

ax N =+ 3 o +H.0.T.

fra=frtar

We now plug these Talyor series expansion back into the FDA, and try to place terms
on the left-hand-side which are those of the PDE, and the remaining terms on the
right-hand-side.

1{ ., O AP Pf A PSf
_(f; +At§+7?+ 3 &3 + HOT - f

4 o AIf A IS

/i +Ax§+ WA ax3+HOT
2Ax I AP If AP Pf

A R TI C T

=0
- HOT

2 2
3’; i [‘;’ 0;2 HOT] ("g" ‘j}x{ HOTJ

This approximation is of order At and Ax? and one can see that if At and Ax -> 0, then all
terms on the RHS go to zero, and we recover the original PDE. So this FDA is consistent
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with the original PDE.

What about being stable? We can learn more about this if we use the orginal PDE to
change the leading time truncation error term to a spacial truncation error term. Taking
the original PDE and taking a derivative with respect to x and then again taking the
original PDE and taking a derivative with respect to time and substitue using these two
we get,

i

2
oF_ ¢* —=-, which is actually a form of the wave equation.

R

Substituting this in for the time derivative,

2 2 2 )3
% + c% = —[Cz—'?rgx—{ + HOT) - (cf'c 37(—]3( + HOT). Now this tells us something
about the behavior of the of the FDA, because the leading error on the RHS is like a
diffusion term, except that the sign is reversed -> ANTI-diffusion! So this FDA will
generate a solution which grows in time, and therefore is not stable. At what wavelengths
will the growth be most rapid? (shortest wavelengths).

In fact, the Euler scheme CANNOT be used to represent the advection equation. While
the technique of using Talyor series is useful to show this, a more general technique of
showing whether a FDA is stable or not will now be shown.

Stability Analysis

In order to prove whether or not a FDA is stable, a stability analysis is performed.
Sometimes this is called a “von Neuman” analysis. Remember that if the PDE solution
is bounded, then the FD solution must be bounded as well. The basic idea is that we
compare the amplitude of two successive solutions from the finite difference scheme,
and make sure that the ratio is less than or equal to 1. Starting with the Euler scheme,

we write the variable £ as an amplitude times a planer wave, f;' = A"¢™*. The A

represents the amplitude of the wave. To determine the stability, we look at the successive
solution amplitudes:

n+1 ikjAx n+l
A"e A

'Aneiijx| IAH

f;;n+l
l n
fj

=|A|, where A is the eigenvalue for this problem.

Since we are analyzing first-order in time advection equation, there is only one eigenvalue.
There are three cases for this analysis:

Al >1 Solution grows, unstable
Al =1 Solution neutral, stable
Al <0 Solution decays, stable

which one of these cases matches the analytical PDE solution?

An important aspect of stability analysis is that if you can find ANY wavelength that is
unstable, the the scheme is considered unstable.

5



cAt

We start the stability analysis by substituting into f'*! = fI" - R

(fm f,-”_l) the planer

wave representation to get:

n+l _ikiAx _ an ikjAx cAt ., ik(j+1)Ax ik(j—1)Ax
A"e =A"e"™ ———A"(e —e

2Ax
Antlpikits _ gnikisx _ C_mAng""‘f“(QiSin kAx)
2Ax
An+] = AT LMAH(ZESIH kA-x)
2Ax
iy , ) cAt
A =A (1_10')’ O‘:—SlnkAx
Ax

An+1

n

=(1-io)=4

here A is the eigenvalue for this 1x1 matrix. If A is less than or equal to one, then the
solution will not amplify. We need to find the magnitude of A.

A|= (R‘32+Im2)”2 =(+ 02)”2 >1
so this result again confirms that the Euler scheme is unstable, as the magnitude of A is
always greater than 1, for some value of kAx, At, and c. Note that as k -> 0 (L -> infi),

then 0—0 and IAl -> 1. How fast do the shorter wave lengths blow up? If the
courant number is 0.5, and kAx = 1t/4 (8Ax wave), then

|A‘| = (]_2 + (%)2 sin” (%—))11’2 =1.06
INIT0=18, IAI*=3.24, |LI"=359,etc. Growth is expodential!
2. Upstream Scheme

All is not lost, as there are other schemes which are stable. Let us discretize the 1-D
advection equation using a forward time scheme and a backward space difference as in,

=0

n+l n n n
. B~
At Ax

This is known as the upstream scheme. Lets find the truncation error first.

Talyor Series Analysis
=1 +At —+——+H.0.T.

2 2, 3 3
13'11=)3"—Axi+m Pf AP Pf

T m B 8 g e




substituting in,

(f+ I Arﬁ AP Pf

P TR IE TRE HOTf]

sz 82f+Ax3 83f

¢ J
— e Ax L —
Ax(ﬁﬁ+8x2!8x2 31 ok’

—HOTJ=O

o o _ (Adf cAx I f
54‘6‘—&;— o 31«2 + HOT |+ 7¥+HOT

The upstream scheme is of order At and Ax, which is a first order scheme in time and
space. Again, lets elminate the time derivative term using the original PDE. Substituting

2 2
i‘t_{ =c? gx{ in for the time derivative,
¥ _ &I _(Fadf cAx I'f
a " u [w a T T THOT
2
%+c%=§(m—cAt)gx—{+HOT
A AN i
at“ax'z(l C’)8x2+HOT

The quantity, c, is called the Courant number and is a very important non-dimenisional
number which appears often these analyses. It describes how far a wave will travel in
one time step relative to the grid spacing. Most advection schemes (as we shall see) are

conditionally stable, that is, they are only stable if the courant number is less or equal to
i

Now the Talyor series analysis again tells us something about the behavior of the of the
FDA. The leading error on the RHS is a diffusion term. So this FDA will generate a
solution which has some diffusion built in. At what wavelengths will the decay be most
rapid? (shortest wavelengths). Also, what happens if ¢,>1? Then the term will have a
negative sign, and growth will occur. So right now we know that ¢ <1 in order to keep
the scheme stable.

Stability Analysis
Doing the stability analysis:

An+lelijx — Anexijx _ CrAn(eaijx _ etk(j—l)A.r)

’i::] =l-c(l-e™)=1

A=1-¢,(1-coskAx +isin kAx)



Finding the magnitude of the eigenvalue,
|A|= ((1 —c, +c,coskAx)” + ¢, sin’ kAx)”2
4] = (1= 2¢, (1 - coskAx)(1- cr))”2
Using this expression, we check conditions which keep |Al < 1. Run through the cases:

(a) ifc, <0, then |Al> 1. The “downwind” scheme is absolutely unstable.

(b) ifc,>1, then [Al>1if (1-coskAx) > 0, which is is always the case. Absolutely
unstable again.

(0) if ¢, <1, then need to check the cosine term. Run through the kAx possibilities.

if kAx=0, 1-coskAx =0, then [Al=1
if kAx=mt/2, 1-coskAx=1, then IAl= (1-2¢,(1-¢,))"
if kAx=t,  1-coskAx =2, then IAl= (1-4c(1-c))"’

As long as 0 < ¢, <1, then |Al<l. This is called conditional stability, or the CFL
condition. Almost all schemes have this type of stability restriction.

Note that the amplitude of the scheme for some cases is much less than 1. Just as in the

growth case, we can get expodential decay of the solution as well. Let kAx = /4 and c,
= 0.5. What is the amplitude after 10, 20, and 100 time steps?

A= (1-2x4(1-cosZ)(1-14))"" =924

I = .45
IAf° =20
|A.|1OO - 0

Therefore for an 8Ax wave, no amplitude remain after 100 time steps.

Phase Errors

We can also use the stability analysis to tell us something about the phase speed of the
each wave component. What should the phase speed be (it should be ‘¢’). Lets first find
the phase speed for the analytical solution. X
———— e A e
e

. f \
f(x,t)=F(x—ct)=Fe**™" where f(x,0)= F.e

\L
My Vo8
AL 24
7y

Compare the solutions at sucessive time steps

flai+ Al E,em(kc(rw» koA
f(x,t) - F;eik(x—cf) -




Now the change in phase of the wave per time step will be given by 6,

o (2 ()
Re coskcAt

_ This is the analytical phase of the solution. Now the phase speed of a wave is given by

®/k. In the expression above,
keAt = e e At =w, At
LT

6, describes the change of phase per time step. Since o = ke, note that w/k = ¢, which is
exactly the phase speed you should get! Notice that the phase speed w/k is NOT a
function of k, that means that all the waves travel at the same speed. This is a non-dispersive
solution.

In a similar way, we can find the numerical phase of the upstream scheme, 7( o o

6. =tan™ G RN =, At
1-¢ (1 —coskAx)

Here, ,/k IS a function of k -> therefore each wavelength travels at a different speed.
The solution is dispersive!

Now to examine how the waves move, we take the ratio of the analytical phases to the
numerical phases.

% <1 waves move slower than ¢
91’1

-2 =1 waves 0 &
. iloye stowey fhad
6

n

-2 >1 waves move faster than c

n

(sl

obviously, the best ratio is where the numerical phase speeds match the analytical
phase speeds. For the upstream scheme, we get

tan'l( —c, sinkAx ]

I-c,(1-coskAx

g_ﬂ = C’}E AtCOS ) which does not tell you much, so use a computer
—KC

to plot tlfne ratio. You plot the phase speed as a function of ¢, and kAx.

3. Leap Frog Scheme

Since the Euler scheme is unstable, and the upstream scheme too diffusive, other schemes
are used for represent the 1-D advection PDE. One of the most commonly (probably
most common) used FDA is called the leap frog scheme. It is written as,
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f:ﬁn+l_f:fnfl +Cf:,-n+l _f’ﬂ_]
2Ar 2Ax

=0

Notice that the scheme is centered in time as well as centered in space. This will require
2 initial conditions ( f!, f/™") to begin the calculation. The leap frog scheme is called a

“three time level scheme” because the FDA has three time levels present. The Euler and
upstream scheme where two-time-level schemes. The additional time level has some
important implications.

Talyor series analysis

Using
ntl af AP azf At 83f
et At§+ = + W +HO.T.
d Ax 82f A P f
Fy=frE Axax = &tz_ - ax3+H.O.T.
we get

@f @f (AP Ff cAx® I f
+HOT |-| ———+ HOT

ar X\ 3 i’ e
which means that the scheme is of order Ax? and Af.
Stability analysis

In order to deal with the addtional time level, we need to use some tricks in order to
perform the stability analysis. Let

n+l - f
cAt and now substitute in the fourier representations as

f:,'n“ — gj Ax (.f;+] f}n_l)
before,

f:,'n = Aneiijx
= Breititx

gj

getting
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B phiAx _ pn ik

Anﬂeiijx o= Bneikjﬁx + CrAn (eik(j+l)Ax _ eik{j—])Ax)

A" = B" — A"c,2isinkAx
Bn+1 =An

These last two equations can be written as a matrix,

|:ﬂ2i0' 1}[,4"} [A””} 1 e
= whereo = ¢_sin
1 0 Bn Bn+l r

and now find the eigenvalues of the system:

{-250—& 1 }
det

1 )
A +2icA-1=0
—2ic ++/-40* +4
£ 2

A, =—ioct+l1-0°

g

Okay, now lets go through some cases:

WO

v
(a) 6> 1 case:

A, =-ictiVo?-1

1/2
|/1+|=[(—0'+ 02—1)2) =(2cr2—20'«/cr2—1—1)”2
letoc=1+¢
A|=(2+4e-(2+2e)2e)-1)" =(1+4e-2v2€) " >1
A =( ) )

So for ¢ > 1, get an unstable scheme. It turns out the IA_| root is conditionally stable for
o > 1, but since we cannot control what h@ we get, the 6 > 1 is considered unstable.

. i oY (
(b) 6 <1 case: XL . \th
A

WY
\ ,'{/ ' \
o8

N L\
% 1 .

A= (Re’+ Imz)”2 =(c?+0 —o‘z))u2 =1 ‘QE'/» ‘
<
so for this case we get a NEUTRAL scheme, i.e., IAL| = 1! There is no dissipation in this
scheme! Hence, we have a conditional stability criteria of ¢ <1 for the leap frog scheme.
Since 6 = ¢, sin kAx, then we must use the most restrictive sin kAx value, so that the
stability condition is ¢, < 1.

WU
b )

Note that the leap frog scheme has 2 eigenvalues, because there are three time levels
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needed in the FDA. The extra eigenvalue is called the “computational mode”. This is
an artificial mode which is created because of the choice of schemes.

Common Advection Schemes Used in Atmospheric Models

Upstream Scheme:  f'' = fI' - C—At(f —fli) >0
Large implicit dampmg
Small phase errors
n+ n— At n
Leap Frog Scheme: f'' = £/ ?Ax (fj+1 fj_l)

No damping
Large phase errors - highly dispersive
computational mode

5 At R VYA .
Crowley/Lax-Wendroff Scheme: f! = f; ——[c )( fra— fj_1)+5[iz) ( Foui Filn =21 )
Weak damping

Moderate phase errors - dispersive

FDA for the 1-D Diffusion Equation

2
We now wish to form approximations for the 1-D advection equation: &F . K gx—{ This
is a very common equation and is a crucial component of the PDE’s for geophysical
motions, such as those in the atmosphere.

Let try a forward in time, centered in space approximation to this PDE.

i i gl L -2
At Ax?

again this is an Euler scheme, and lets perform a truncation error analysis using Taylor
series:

Truncation Error Analysis

af At 82f+At If
8: 20 g 3 o9

=1+ A= +H.O.T.

af szaf Ax* & f

fa =17 Axax 2! axz‘ 3 ot

+H.0.T,

substituting in,
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